Bending in the space of quasi-Fuchsian structures

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exotic Projective Structures and Quasi-fuchsian Space

1. Introduction. Let S be an oriented closed surface of genus g > 1. A projec-tive structure on S is a maximal system of local coordinates modeled on the Riemann sphere C, whose transition functions are Möbius transformations. For a given pro-jective structure on S, we have a pair (f, ρ) of a local homeomorphism f from the universal cover S of S to C, called a developing map, and a group homomo...

متن کامل

Exotic Projective Structures and Boundary of Quasi-fuchsian Space

Let P (S) denote the space of projective structures on a closed surface S. It is known that the subset Q(S) P (S) of projective structures with quasiFuchsian holonomy has in nitely many connected components. In this paper, we investigate the con guration of these components. In particular, we show that the closure of any exotic component of Q(S) intersects the closure of the standard component ...

متن کامل

Coordinates for Quasi-Fuchsian Punctured Torus Space

We consider complex Fenchel–Nielsen coordinates on the quasi-Fuchsian space of punctured tori. These coordinates arise from a generalisation of Kra’s plumbing construction and are related to earthquakes on Teichmüller space. They also allow us to interpolate between two coordinate systems on Teichmüller space, namely the classical Fuchsian space with Fenchel–Nielsen coordinates and the Maskit e...

متن کامل

Spirals in the Boundary of Slices of Quasi-fuchsian Space

We prove that the Bers and Maskit slices of the quasi-Fuchsian space of a once-punctured torus have a dense, uncountable set of points in their boundaries about which the boundary spirals infinitely.

متن کامل

Linear Slices of the Quasi-fuchsian Space of Punctured Tori

After fixing a marking (V,W ) of a quasi-Fuchsian punctured torus group G, the complex length λV and the complex twist τV,W parameters define a holomorphic embedding of the quasi-Fuchsian space QF of punctured tori into C2. It is called the complex Fenchel-Nielsen coordinates of QF . For c ∈ C, let Qγ,c be the affine subspace of C2 defined by the linear equation λV = c. Then we can consider the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1991

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500008016